

GUR[®] 4150 C

GUR®

UHMW-PE powder grade

The density of the particles according DIN 51913 (Helium Pycnometry) is > 0,94 g/cm³.

	_								-						
Į.	ار	r	\cap	М	ш	C	t i	ır	١t		r	\mathbf{r}	2	ŤΙ	n
		ш		u	w	н.				u			П		

Resin Identification	(PE-UHMW)	ISO 1043
Part Marking Code	>(PE-UHMW)<	ISO 11469
Average molecular weight	7.8E6 g/mol	Margolies' equation
Average particle size, d50	160 μm	laser scattering

Rheological properties

Viscosity number	3400 cm ³ /g	ISO 307, 1628
Intrinsic viscosity	2800	ISO 307, 1628

Typical mechanical properties

Tensile modulus	630	MPa	ISO 527-1/-2
Tensile stress at yield, 50mm/min	19	MPa	ISO 527-1/-2
Tensile strain at yield, 50mm/min	14	%	ISO 527-1/-2
Tensile stress at 50% strain	19	MPa	ISO 527-1/-2
Tensile stress at break, 50mm/min	40	MPa	ISO 527-1/-2
Nominal strain at break	400	%	ISO 527-1/-2
Elongational stress F, 150/10	0.5	MPa	ISO 21304-2
Charpy double notched impact strength, 23°C	180	kJ/m²	ISO 21304-2
Poisson's ratio	0.47 ^[C]		
Shore D hardness, 15s	60		ISO 48-4 / ISO 868

Tribological properties

Wear by sandslurry method 85 (based on GUR 4120=100)

Thermal properties

[C]: Calculated

Temperature of deflection under load, 1.8 MPa	38 °C	ISO 75-1/-2
Vicat softening temperature, 50°C/h 50N	80 °C	ISO 306

Electrical properties

Volume resistivity	1E12 Ohm.m	IEC 62631-3-1
Surface resistivity	1E12 Ohm	IEC 62631-3-2

Physical/Other properties

Density	930 kg/m³	ISO 1183
Bulk density	420 kg/m ³	ISO 60

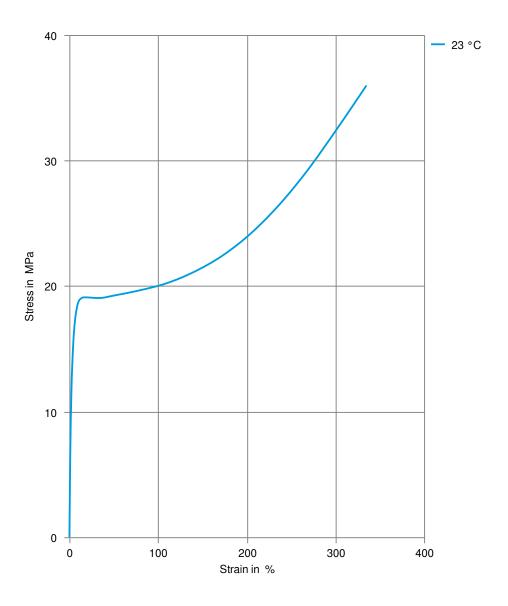
Characteristics

Processing Ram Extrusion, Compression moulding

Delivery form Powder

Printed: 2025-05-30 Page: 1 of 3

Revised: 2025-05-02 Source: Celanese Materials Database


GUR[®] 4150 C

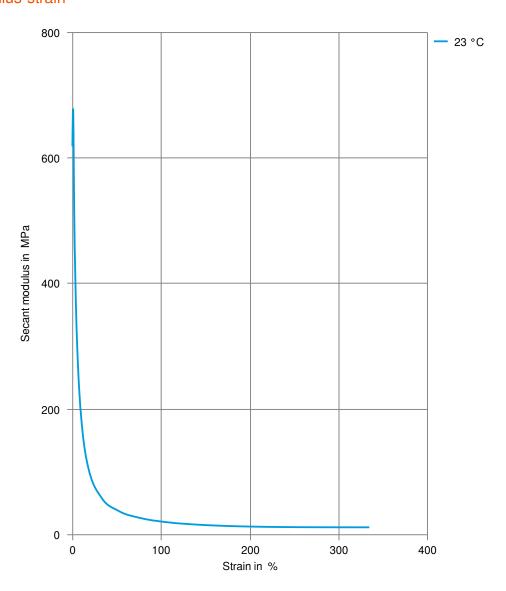
GUR®

Special characteristics

Hydrolysis resistant, Low wear / Low friction, Chemical resistant

Stress-strain

Printed: 2025-05-30 Page: 2 of 3


Revised: 2025-05-02 Source: Celanese Materials Database

(+) 18816996168 Ponciplastics.com

GUR® 4150 C

Secant modulus-strain

Printed: 2025-05-30 Page: 3 of 3

NOTICE TO USERS: Values shown are based on testing of laboratory test specimens and represent data that fall within the standard range of properties for natural material. These values alone do not represent a sufficient basis for any part design and are not intended for use in establishing maximum, minimum, or ranges of values for specification purposes. Colourants or other additives may cause significant variations in data values. Properties of moulded parts can be influenced by a wide variety of factors including, but not limited to, material selection, additives, part design, processing conditions and environmental exposure. Other than those products expressly identified as medical grade (including by MT® product designation or otherwise), Celanese's products are not intended for use in medical or dental implants. Regardless of any such product designation, any determination of the suitability of a particular material and part design for any use contemplated by the users and the manner of such use is the sole responsibility of the users, who must assure themselves that the material as subsequently processed meets the needs of their particular product or use. To the best of our knowledge, the information contained in this publication is accurate; however, we do not assume any liability whatsoever for the accuracy and completeness of such information. The information contained in this publication should not be construed as a promise or guarantee of specific properties of our products. It is the sole responsibility of the users to investigate whether any existing patents are infringed by the use of the materials mentioned in this publication. Moreover, there is a need to reduce human exposure to many materials to the lowest practical limits in view of possible adverse effects. To the extent that any hazards may have been mentioned in this publication, we neither suggest nor guarantee that such hazards are the only ones that exist. We recommend that persons intending to rely on any recommendation or to use any e

© 2025 Celanese or its affiliates. All rights reserved. Celanese®, registered C-ball design and all other trademarks identified herein with ®, TM, SM, unless otherwise noted, are trademarks of Celanese or its affiliates. Fortron is a registered trademark of Fortron Industries LLC.